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A growing number of the elements identified in
intracellular signaling events that affect cell growth and
transformation are proteins that physically interact
with each other via domains or specifically recognized
amino acid sequences. These intracellular protein-
protein interactions are particularly attractive targets
in oncology due to their participation in controlling
mitogenic signal transduction pathways that are acti-
vated or deregulated in cancer cells.1-3 This is the case
for the protein-protein interactions involving the Src
homology 2 (SH2) domain of Grb24 in the Ras signal
transduction pathway.5-7 In mammalian cells, the
Grb2 adaptor protein links the tyrosine kinase receptors
activated by growth factors to Sos, a guanine nucleotide
exchange factor that, upon receptor binding and trans-
location of the Grb2-Sos complex to the plasma mem-
brane, converts the inactive Ras‚GDP to active Ras‚GTP.8
Activated Ras triggers the MAP kinase cascade that is
essential for cell growth and differentation.9 The in-
teraction between the activated tyrosine kinase recep-
tors and Grb2 is mediated by the Src homology 2 domain
of the signaling protein. Agents that specifically disrupt
this protein-protein interaction could potentially shut
down the Ras pathway and present an intervention
point for blocking human malignancy.
Starting with the minimal recognition motif of the

SH2 domain of Grb2,10 we have initiated a medicinal
chemistry program to identify compounds that specifi-
cally disrupt the interaction between activated tyrosine

kinase receptors and the Grb2-SH2 domain. We
recently reported the design of an N-terminal group that
can impart high affinity to the minimal tripeptide
sequence recognized by the Grb2-SH2 domain.11 In the
present communication, we report a further improve-
ment in the binding affinity of the 3-amino-Z-Tyr-
(PO3H2)-X+1-Asn-NH2 phosphopeptide by optimizing the
X+1 position.12

Degenerate phosphotyrosyl peptide libraries have
shown that the sequence specificities of SH2 domains
for phosphotyrosyl peptides lay in the portion of the
peptide immediately carboxy-terminal of the phospho-
tyrosine residue.13,14 For the SH2 domain of Grb2, the
consensus sequence is Tyr(PO3H2)-X+1-Asn-X+3 and the
residue that determines specificity is asparagine.13,15
Synthetic16 and phage display library17 approaches have
been used to identify optimal residues carboxy-terminal
to phosphotyrosine. Although these studies agree on
the exclusive selectivity for asparagine at the X+2
position, differences between the two techniques were
observed for positions X+1 and X+3. For position X+1,
glutamine, glutamic acid, isoleucine, tyrosine, and va-
line were selected from synthetic peptide libraries,16
while a preference for glutamic acid and methionine
residues was identified by phage display.17 However,
selection of glutamic acid, glutamine, methionine, or
valine at the X+1 position did not alter the binding
affinity of phosphotyrosyl peptides for the Grb2-SH2
domain.17 The above results seemed to indicate a low
stringency for this position.
The unique structural features of the ligand-bound

Grb2-SH218 were exploited to optimize the X+1 position
of 3-amino-Z-Tyr(PO3H2)-X+1-Asn-NH2, a recently re-
ported potent antagonist of the Grb2-SH2 domain (X+1
) Ile).11

The structure of the Grb2-SH2 domain complexed
with a 7-mer phosphotyrosyl peptide19 derived from the
BCR-abl protein was determined in our group by X-ray
crystallography at 2.1 Å resolution.18 The folding of the
SH2 domain of Grb2 shows a general pattern consisting
of a central antiparallel â-sheet flanked by two R-helices,
but the ligand has a folded conformation, in contrast to
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all previously reported structures where the phospho-
tyrosyl peptide adopts an extended conformation.20 The
Grb2-SH2 domain has a bulky tryptophan residue
(Trp-121) in position 1 of the EF loop. The side chain
of this amino acid closes the binding cleft C-terminal to
phosphotyrosine and forces the ligand to adopt a type I
â-turn conformation (Figure 1). This conformation is
maintained by a hydrogen bond between the carbonyl

group of phosphotyrosine and the backbone nitrogen of
the residue at the X+3 position. Due to this type I â-turn
conformation, the residue at the X+1 position presents
a local right-handed 310 helical conformation. We
posited that improved potency could be obtained by
incorporating R,R-dialkylated amino acids at the X+1
position of phosphopeptide antagonists of the Grb2-
SH2 domain; R,R-disubstituted amino acids are known
to stabilize R and 310 helices in short peptide motifs,21-23

and the incorporation of such building blocks at the X+1
position of 3-amino-Z-Tyr(PO3H2)-X+1-Asn-NH2 should
favor the adoption of a conformation close to the one
observed in the ligated form of the phosphopeptide.
Additional structural information was taken into con-
sideration for selection of the R,R-disubstituted linear
and cyclic amino acids. In the X-ray structure of the
ligand-bound Grb2-SH2, the side chain of valine at the
X+1 position of the phosphopeptide ligand makes six van
der Waals contacts24 with PheâD5 and one van der
Waals interaction with GlnâD325 (Figure 1). Therefore,
the R,R-disubstituted amino acid at the X+1 position
should not only induce a local right-handed 310 helical
conformation, but its side chain should also mimic the
above hydrophobic interactions. Table 1 shows some
selected examples of the SAR data obtained. Two
building blocks, 1-aminocyclopentanecarboxylic acid (4)
and 1-aminocyclohexanecarboxylic acid (5), showed
respectively a 3-fold and 65-fold increase in binding
affinity relative to 1, our reference compound. The
1-aminocyclopentanecarboxylic acid derivative (4) is less
active than its six-membered ring analogue (5), probably
because in the former the Cγ atom of the ring,27 which
corresponds to one of the Cγ atoms of the valine residue
in the X-ray structure of the ligand-bound Grb2-SH2
domain (Figure 1), is not well positioned and forms
weaker van der Waals interactions with PheâD5 and
GlnâD3 (Figure 2). To further illustrate the importance
of the van der Waals contacts in keeping the binding
affinities in the low nanomolar range, we have included
in Table 1 the data obtained with R-aminoisobutyric acid
(2) and 1-aminocyclopropanecarboxylic acid (3). Even
if these building blocks are able to induce the adoption

Table 1. Structure-Activity Relationships of Phosphopeptides
with the General Sequence
3-Amino-Z-Tyr(PO3H2)-X+1-Asn-NH2

a

a Competitive binding assays with the recombinant SH2 domain
of Grb2 expressed as a glutathione S-transferase fusion protein
and the immbolized tyrosine-phosphorylated MPB-EGFR were
conducted as previously described.11,26 Dose-response relation-
ships were constructed by nonlinear regression of the competion
curves with GraFit 3.0 (Erithacus Software Limited, London,
U.K.). The errors quoted correspond to the standard error in the
fits of the data.

Figure 1. Conformation of the C-terminal part of the phosphopeptide ligand19 in the X-ray structure of the ligated Grb2-SH2
domain.18 The intramolecular hydrogen bond formed between the carbonyl group of phosphotyrosine and the backbone nitrogen
of the residue at the X+3 position appears as a dashed line.

Table 2. Relative Affinities (IC50) of Phosphopeptide 5 for GST/Grb2, Lck, p85, and Shp2 SH2 Domains and SHC PTB Domaina

Grb2 SH2 Lck SH2 p85 SH2b Shp2 SH2 SHC PTB

sequences Biotin-XnpYINQXn Biotin-XnpYEEIXn Biotin-XnpYVPMXn Biotin-XnpYTAVXn Biotin-XnENPQpYXn
peptide 5 0.004 ( 0.001 6.24 ( 0.39 0.97 ( 0.03 >5 >5
a The results are expressed as the concentration at which half-maximal competition was observed (IC50, µM). Competitive binding

phosphopeptide assays were conducted as previously described.31 The errors quoted correspond to the standard error in the fits of the
data. b N-Terminal SH2 domain.
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of a favorable conformation, they cannot establish the
hydrophobic interactions observed in the X-ray structure
of the ligand-bound Grb2-SH2 domain. The incorpora-
tion of 2-aminoindan-2-carboxylic acid (6) at the X+1
position represents an attempt to create an additional
van der Waals interaction with PheâD5 or GlnâD3,
depending on the conformation of the unsaturated ring.
Although modeling studies suggested that there is
enough space at the surface of the protein to accom-
modate the additional aromatic ring, no gain in activity
was observed (Table 1). On the contrary, 6 is signifi-
cantly less active than its parent compound 4 (Table
1). A hydrophobic collapse29 of the bulky amino acid at
the X+1 position with the N-terminal moiety of the
phosphopeptide, resulting in an unfavorable preorga-
nized conformation of the antagonist in its unligated
state, could explain the drop in binding activity observed
for 6.30
Phosphopeptide 5 is not only a very potent antagonist

of the Grb2-SH2 domain but also very selective for this
SH2 domain. Table 2 presents the data obtained in
competitive binding assays with phosphopeptide 5 and
different SH2 domains. The phosphopeptide shows a
243-1560-fold preferential binding to Grb2-SH2 over
p85 N-terminal SH2 and Lck SH2, respectively, and at
least 1250-fold selectivity to Grb2-SH2 over Shp2 SH2
and SHC PTB.
In summary, the unique structural features of the

SH2 domain of Grb2 have been exploited to optimize
the X+1 position of 3-amino-Z-Tyr(PO3H2)-X+1-Asn-NH2.
Phosphopeptide 5 is, to the best of our knowledge, the
most potent antagonist so far reported for the SH2
domain of Grb2. Other examples of the use of structural
information to increase the binding affinity of antago-
nists of the Grb2-SH2 domain will be reported from
our group in due course.
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